If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+7n-1000=0
a = 1; b = 7; c = -1000;
Δ = b2-4ac
Δ = 72-4·1·(-1000)
Δ = 4049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{4049}}{2*1}=\frac{-7-\sqrt{4049}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{4049}}{2*1}=\frac{-7+\sqrt{4049}}{2} $
| 5.27=3.1(r–8.1) | | |2x+5|+6=13 | | 0=x^2-31x-450 | | 4(1+0.5m)=7 | | 3(x+2)-4(2x-2)=3x-2 | | 6x+9)/7+1=(4x+1)/3-9 | | 49s=19 | | 6x+9/7+1=4x+1/3-9 | | |5x+0|=10 | | 5(x-3)-4(x-2)=15 | | k=1∑900(4k+6) | | 4x+17=210 | | 2y+15=y+10 | | 7/8y-3=4y-9/2 | | -5|3x-6|+4=14 | | 3v+9=-9v+6 | | -6x-4(-7x-13)=- | | x^2+6-5 | | (1/7)(2x-8)=(-5/8)(-7x-9) | | 5x+3=44 | | 38q=-12 | | 2x2-57x+391=0 | | 1/3x+7=3/7x-1/3 | | 6y2-77y+240=0 | | 10x+75=20x-5 | | -(2x+3)=2x-2 | | 1/4k=3(-4k+3) | | 6x^2+20-16=0 | | 3x-6=-23 | | −2(4+m)+6(m−3)=14 | | 18=s-34 | | x-3006=7844 |